37 research outputs found

    Image Performance Characterization of an In-Beam Low-Field Magnetic Resonance Imaging System During Static Proton Beam Irradiation

    Get PDF
    Image guidance using in-beam real-time magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy for moving tumors, by reducing treatment margins, detecting interfractional and intrafractional anatomical changes and enabling beam gating. The aim of this study is to quantitatively characterize the static magnetic field and image quality of a 0.22T open MR scanner that has been integrated with a static proton research beamline. The magnetic field and image quality studies are performed using high-precision magnetometry and standardized diagnostic image quality assessment protocols, respectively. The magnetic field homogeneity was found to be typical of the scanner used (98ppm). Operation of the beamline magnets changed the central resonance frequency and magnetic field homogeneity by a maximum of 16Hz and 3ppm, respectively. It was shown that the in-beam MR scanner features sufficient image quality and influences of simultaneous irradiation on the images are restricted to a small sequence-dependent image translation (0.1–0.7mm) and a minor reduction in signal-to-noise ratio (1.3%–5.6%). Nevertheless, specific measures have to be taken to minimize these effects in order to achieve accurate and reproducible imaging which is required for a future clinical application of MR integrated proton therapy

    Dosimetric evidence confirms computational model for magnetic field induced dose distortions of therapeutic proton beams

    Full text link
    Given the sensitivity of proton therapy to anatomical variations, this cancer treatment modality is expected to benefit greatly from integration with magnetic resonance (MR) imaging. One of the obstacles hindering such an integration are strong magnetic field induced dose distortions. These have been predicted in simulation studies, but no experimental validation has been performed so far. Here we show the first measurement of planar distributions of dose deposited by therapeutic proton pencil beams traversing a one-Tesla transversal magnetic field while depositing energy in a tissue-like phantom using film dosimetry. The lateral beam deflection ranges from one millimeter to one centimeter for 80 to 180 MeV beams. Simulated and measured deflection agree within one millimeter for all studied energies. These results proof that the magnetic field induced proton beam deflection is both measurable and accurately predictable. This demonstrates the feasibility of accurate dose measurement and hence validates dose predictions for the framework of MR-integrated proton therapy

    Comment on 'Comparative evaluation of two dose optimization methods for image-guided, highly-conformal, tandem and ovoids cervix brachytherapy planning'

    No full text
    Comparison of optimization algorithms for inverse treatment planning requires objective function value evaluation

    Image Performance Characterization of an In-Beam Low-Field Magnetic Resonance Imaging System During Static Proton Beam Irradiation

    No full text
    Image guidance using in-beam real-time magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy for moving tumors, by reducing treatment margins, detecting interfractional and intrafractional anatomical changes and enabling beam gating. The aim of this study is to quantitatively characterize the static magnetic field and image quality of a 0.22T open MR scanner that has been integrated with a static proton research beamline. The magnetic field and image quality studies are performed using high-precision magnetometry and standardized diagnostic image quality assessment protocols, respectively. The magnetic field homogeneity was found to be typical of the scanner used (98ppm). Operation of the beamline magnets changed the central resonance frequency and magnetic field homogeneity by a maximum of 16Hz and 3ppm, respectively. It was shown that the in-beam MR scanner features sufficient image quality and influences of simultaneous irradiation on the images are restricted to a small sequence-dependent image translation (0.1–0.7mm) and a minor reduction in signal-to-noise ratio (1.3%–5.6%). Nevertheless, specific measures have to be taken to minimize these effects in order to achieve accurate and reproducible imaging which is required for a future clinical application of MR integrated proton therapy

    Image Performance Characterization of an In-Beam Low-Field Magnetic Resonance Imaging System During Static Proton Beam Irradiation

    No full text
    Image guidance using in-beam real-time magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy for moving tumors, by reducing treatment margins, detecting interfractional and intrafractional anatomical changes and enabling beam gating. The aim of this study is to quantitatively characterize the static magnetic field and image quality of a 0.22T open MR scanner that has been integrated with a static proton research beamline. The magnetic field and image quality studies are performed using high-precision magnetometry and standardized diagnostic image quality assessment protocols, respectively. The magnetic field homogeneity was found to be typical of the scanner used (98ppm). Operation of the beamline magnets changed the central resonance frequency and magnetic field homogeneity by a maximum of 16Hz and 3ppm, respectively. It was shown that the in-beam MR scanner features sufficient image quality and influences of simultaneous irradiation on the images are restricted to a small sequence-dependent image translation (0.1–0.7mm) and a minor reduction in signal-to-noise ratio (1.3%–5.6%). Nevertheless, specific measures have to be taken to minimize these effects in order to achieve accurate and reproducible imaging which is required for a future clinical application of MR integrated proton therapy
    corecore